Telegram Group & Telegram Channel
Direct Preference Optimization: Your Language Model is Secretly a Reward Model [2023] - продолжаем LLM-ликбез

В прошлый раз мы разбирали стандартный RLHF, теперь давайте глянем на самого популярного из конкурентов и наследников, DPO. Авторы статьи говорят про RLHF следующее:

1) Reward model у нас не особо круто работает, особенно вне data distribution, поэтому полноценный её максимизатор будет плохим.
2) Существует ещё и проблема разнообразия, которого при идеальной максимизации не будет.
3) Наши RL методы сами по себе неидеальны и дороги в вычислении и реализации/отладке.

Вместо этого они хотят сформулировать задачу для обучения более простым образом. Давайте посмотрим, что из этого вышло.

Я не погружался в доказательства вывода, изложу своё понимание результата. Авторы замечают, что двухшаговая процедура из обучения Reward Model и затем RL можно переформулировать как одношаговую процедуру обучения на задачу с одной функцией ошибки и без дополнительной Reward Model.

Почему это возможно? Во-первых, в отличие от обычного RL, никаких настоящих наград не существует, а также нет никакого онлайн-взаимодействия со средой. У нас есть только зафиксированный датасет из троек [запрос ; хороший ответ ; плохой ответ].

На таких данных задачу можно формулировать по-разному, но в сущности они будут оптимизировать одно и то же - приближать модель к генерации хороших ответов, отдалять от генерации плохих ответов, при этом накладывая регуляризацию, чтобы модель далеко не убегала от инициализации. Одну из реализаций такой функции ошибки и предложили авторы статьи.

Практического опыта у меня нет, но в статье DPO вроде бы обходит RLHF на задачах. Чуваки в статье про Llama3 пишут, что используют DPO, так что, наверное, метод действительно лучше с учётом простоты реализации.

Замечу, что метод не решает обозначенные мною проблемы в посте про RLHF. Они вытекают из самих данных с человеческой разметкой, которые, во-первых, зафиксированы, а значит, не происходит GAN-подобного обучения, в котором данные пытаются "атаковать" модель в её слабые места и тем самым позволяя ей улучшаться, а, во-вторых, недостаточно велики и разнообразны, чтобы для решения поставленной задачи нужно было обучаться логическому размышлению и построению качественной картины мира.

Наверняка для RLHF/DPO придумали множество модификаций (в том числе всякие конструкции поверх LLM типа CoT), которые дают более крутой результат, но с таким соотношением пространства параметров и объёма данных решить задачу по-нормальному пока что вряд ли получится.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/221
Create:
Last Update:

Direct Preference Optimization: Your Language Model is Secretly a Reward Model [2023] - продолжаем LLM-ликбез

В прошлый раз мы разбирали стандартный RLHF, теперь давайте глянем на самого популярного из конкурентов и наследников, DPO. Авторы статьи говорят про RLHF следующее:

1) Reward model у нас не особо круто работает, особенно вне data distribution, поэтому полноценный её максимизатор будет плохим.
2) Существует ещё и проблема разнообразия, которого при идеальной максимизации не будет.
3) Наши RL методы сами по себе неидеальны и дороги в вычислении и реализации/отладке.

Вместо этого они хотят сформулировать задачу для обучения более простым образом. Давайте посмотрим, что из этого вышло.

Я не погружался в доказательства вывода, изложу своё понимание результата. Авторы замечают, что двухшаговая процедура из обучения Reward Model и затем RL можно переформулировать как одношаговую процедуру обучения на задачу с одной функцией ошибки и без дополнительной Reward Model.

Почему это возможно? Во-первых, в отличие от обычного RL, никаких настоящих наград не существует, а также нет никакого онлайн-взаимодействия со средой. У нас есть только зафиксированный датасет из троек [запрос ; хороший ответ ; плохой ответ].

На таких данных задачу можно формулировать по-разному, но в сущности они будут оптимизировать одно и то же - приближать модель к генерации хороших ответов, отдалять от генерации плохих ответов, при этом накладывая регуляризацию, чтобы модель далеко не убегала от инициализации. Одну из реализаций такой функции ошибки и предложили авторы статьи.

Практического опыта у меня нет, но в статье DPO вроде бы обходит RLHF на задачах. Чуваки в статье про Llama3 пишут, что используют DPO, так что, наверное, метод действительно лучше с учётом простоты реализации.

Замечу, что метод не решает обозначенные мною проблемы в посте про RLHF. Они вытекают из самих данных с человеческой разметкой, которые, во-первых, зафиксированы, а значит, не происходит GAN-подобного обучения, в котором данные пытаются "атаковать" модель в её слабые места и тем самым позволяя ей улучшаться, а, во-вторых, недостаточно велики и разнообразны, чтобы для решения поставленной задачи нужно было обучаться логическому размышлению и построению качественной картины мира.

Наверняка для RLHF/DPO придумали множество модификаций (в том числе всякие конструкции поверх LLM типа CoT), которые дают более крутой результат, но с таким соотношением пространства параметров и объёма данных решить задачу по-нормальному пока что вряд ли получится.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/221

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

How To Find Channels On Telegram?

There are multiple ways you can search for Telegram channels. One of the methods is really logical and you should all know it by now. We’re talking about using Telegram’s native search option. Make sure to download Telegram from the official website or update it to the latest version, using this link. Once you’ve installed Telegram, you can simply open the app and use the search bar. Tap on the magnifier icon and search for a channel that might interest you (e.g. Marvel comics). Even though this is the easiest method for searching Telegram channels, it isn’t the best one. This method is limited because it shows you only a couple of results per search.

How Does Bitcoin Mining Work?

Bitcoin mining is the process of adding new transactions to the Bitcoin blockchain. It’s a tough job. People who choose to mine Bitcoin use a process called proof of work, deploying computers in a race to solve mathematical puzzles that verify transactions.To entice miners to keep racing to solve the puzzles and support the overall system, the Bitcoin code rewards miners with new Bitcoins. “This is how new coins are created” and new transactions are added to the blockchain, says Okoro.

Knowledge Accumulator from us


Telegram Knowledge Accumulator
FROM USA